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Power operator, effective Hamiltonian and AC Poynting 
splitting 
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Theoretical Chemistry Institute, University of Wisconsin, Madison, Wi 53706, USA 

Received 13 April 1982 

Abstract, The concept of the effective Hamiltonian is introduced and the first- and 
second-order perturbative solutions are obtained for a non-degenerate system. By solving 
the first-order effective Schrodinger equation, we derive the AC Poynting splitting for the 
exact field. In the long wavelength approximation, the AC Poynting splitting is shown to 
reduce to the AC Stark splitting if the electric dipole dominates and to the AC Zeeman 
splitting if the magnetic dipole dominates. For the quantised electromagnetic fields, it is 
found that the effective Hamiltonian approach does not distinguish between ( i )  the 
conventional quantisation of the vector potential and (ii) the quantisation of the fields 
directly. 

1. Introduction 

With the availability of the coherent laser radiation, atomic and molecular physics 
has taken a new dimension. In the strong-field resonance phenomena where a laser 
field is tuned to near-resonance with two atomic energy states, the conventional 
(weak-field) time-dependent perturbation theory is no longer adequate to give 
sufficiently detailed information, and the descriptions are now dominated by the Rabi 
frequency, AC Stark splitting, detuning and so on. For a recent review of the importance 
of the Rabi frequency in the matter-strong-field interactions, see e.g. Knight and 
Milonni (1980). 

Accompanying this new and exciting field of physics is an old problem that demands 
immediate attention. The problem in question is gauge invariance in quantum 
mechanics. The urgency of this problem is illustrated in a statement in the textbook 
on laser physics by Sargent er af (1977, pp 15-6) where these authors state: ‘We note 
that the interaction Hamiltonian 21 = em-’A * p  is not as accurate as equation (6) 
[-eE(R, t ) * r ]  in the dipole approximation (does not include the A’ term) and can 
lead to incorrect results’. This conclusion is a direct consequence of the construction 
of the Rabi flopping frequency from the matrix elements of the ‘interaction Hamil- 
tonians’: that the Rabi frequency for one form of the ‘interaction Hamiltonian’ simply 
differs from that for another form of ‘interaction Hamiltonian’ when the detuning 
does not vanish (i.e. not on resonance). 

The above statement has its origin in Lamb’s shift measurements (Lamb 1952, 
see also Scully and Lamb 1967). Since Lamb’s (1952) paper, there has been consider- 
able interest (and disagreement) among those who have tried to understand the 
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936 K-H Yang 

fundamental mechanism by which charged matter interacts with electromagnetic fields, 
classical or quantised (e.g. Fried 1973, Power and Zienau 1959, Yang 1976, 1982a, 
Shirokov 1981). As Shirokov (1981) has pointed out very clearly, those who have 
shown the ‘complete equivalence’ of A ‘ p  and r * E  have based their argument on the 
gauge invariance of the S-matrix, defined to be U(ti, tf) with ti = -m and t f =  fa 
where U is an evolution operator. He further observes that not all physical processes 
can be described by the S-matrix formalism. As this author has pointed out (Yang 
1982a), the evolution operators U(ti, tt) are gauge dependent for any finite times ti 
and tf ,  

So far, the only way to avoid the gauge problem in the strong-field interaction has 
been to use the -er .E(O, t )  exclusively in the dipole approximation (e.g. Sargent et 
a f  1977, Knight and Milonni 1980, Dalton 1982, Radmore and Knight 1982), simply 
because of its explicit dependence on the physically measurable quantity E. Although 
the dipole approximation is apparently adequate for the moment, a deeper theoretical 
question remains: how can the fields be treated exactly instead of just being in the 
dipole approximation? 

The purpose of this paper is to propose a method by which the electromagnetic 
fields can be treated exactly and in a gauge-invariant manner. We will present a 
particular formulation based on the classical Poynting theorem and the conservation 
of energy (e.g. Jackson 1975, pp236-41), in which, for example, the dynamic AC 

Stark splitting will be replaced by the AC Poynting splitting that reduces to the former 
when the electric dipole approximation on the fields is made. Our basic idea is to 
introduce the effective Hamiltonian and wavefunction with the characteristics that 
they both are gauge invariant and are in a one-to-one correspondence to a given field 
situation. These two properties are absent in the ordinary Hamiltonians and wavefunc- 
tions which are gauge dependent and hence do not have the one-to-one correspondence 
property with the fields (e.g. Cohen-Tannoudji et a1 1977). 

Of course, the effective Hamiltonian and wavefunction are derived from the 
ordinary Hamiltonians and wavefunctions through the Schrodinger equations. What 
is needed in between is the gauge-invariant formulation of quantum mechanics (Yang 
1976, 1982a,b, Cohen-Tannoudji et a1 1977, Kobe and Smirl 1978, Leubner and 
Zoller 1980, Kobe and Wen 1980,1982, Leubner 1981, Kobe e t a f  1982, Kobe 1983, 
Lee and Albrecht 1983), together with the method of the gauge-invariant time- 
dependent perturbation theory (Yang 1982~) .  This formulation is based on the 
correspondence principle (Bohr 1928) and, as noted before, Poynting’s theorem and 
the conservation of energy (e.g. Jackson 1975). It has been shown to remove all 
gauge ambiguity in the interpretation of transition probabilities (e.g. Leubner and 
Zoller 1980) and to satisfy the conservation of energy at all times (Yang 1982a, b, 
Kobe et a1 1982). Furthermore, it is also consistent with the Foldy-Wouthuysen 
transformations (Foldy and Wouthuysen 1950), as shown by Kobe and Yang (1980) 
and Yang (1982a). This last property is especially important when spinning particles 
are concerned. 

The arrangement of this paper is as follows. In § 2, we will briefly review the 
gauge-invariant formulation and the basic principles involved. In § 3, the concepts 
of the effective Hamiltonian and wavefunction will be introduced, and their perturba- 
tive solutions through the second order derived. Then, we will make a comparison 
with the Hamiltonian in the multipolar gauge (e.g. Power and Zienau 1959, Fiutak 
1963, Woolley 1975). In § 4, the rotating-wave approximation will be made to derive 
the AC Poynting splitting which is then shown to reduce to the AC Stark splitting in 
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the dipole approximation of the fields. In § 5 ,  we will consider the quantised electro- 
magnetic fields and show that either quantising the vector potential or quantising the 
fields directly can be used in conjunction with our effective Hamiltonian with the 
same results. Finally we present a short discussion in § 6. 

2. The gauge-invariant formulation 

In this section, the basic theory and the underlying physical principles of the gauge- 
invariant formulation will be briefly reviewed. The all-important concept of manifest 
gauge invariance: can be found in Yang (1976, 1982a, b), Cohen-Tannoudji et a1 
(1977), Kobe and Smirl (1978) and Kobe et a1 (1982). For an application of this 
formulation to resolve the ambiguity in the interpretation of transition probabilities, 
the works of Leubner and Zoller (1980) and Leubner (1981) are the clearest and 
simplest to comprehend. Kobe and Wen (1980, 1982) and Shirokov (1981) have 
compared the exact conventional and gauge-invariant probabilities for a charged 
simple-harmonic oscillator interacting with a radiation field in the dipole approxima- 
tion. Recently, Lee and Albrecht (1983) have presented an excellent review on the 
applications of our formulation in molecular spectroscopies. 

Consider a non-relativistic, spinless charged particle of mass m and charge e in 
the presence of a conservative, electrostatic field Eo(r)  = -VVo(r)  and a time-varying 
radiation field E(r,  t )  andB(r, t ) .  If we use the potentials A(r, t )  and @(r, r )  to represent 
the fields E and B, then 

E(r,  t )  = -VO(r, t)-c-'aA(r, t ) / a t ,  B(r,  t )  = V x A ( r ,  t ) .  (2.1) 

The Schrodinger equation and the Hamiltonian in this gauge are then 

ihaP(r, ? ) / a t  = H(t )V(r ,  t ) ,  

H ( t )  = ( p  -eA/c)*/2m + e V o + e @ ,  
(2.2) 

(2.3) 

with initial condition P(r, to) .  Here, we note that the potentials and the fields are 
considered classical and external quantities. 

The fundamental concept of the gauge-invariant formulation is to construct the 
energy operator HB describing the particle's quantity that conserves with the radiation 
energy and its energy flux. This is done by using the classical Poynting theorem and 
conservation of energy (e.g. Jackson 1975, Yang 1976, 1982a, b, Kobe et a1 1982) 
through the correspondence principle (Bohr 1928). If we neglect the self-interaction, 
then HB is determined by 

aHB/at + [ H B , H ] / i ) l = ~ ( J . E + E . J ) ~ P ( t ) ,  (2.4) 

where J =eo = e ( g  - e A / c ) / m  is the current operator associated with the Hamiltonian 

+ By 'manifest gauge invariance' we mean same forms and same values in all gauges (e.g. Cohen-Tannoudji 
et a[ 1977). This definition is analogous to the definition of Lorentz invariance in relativity (e.g. Jackson 
1975, chap 11) (same forms and same values in all Lorentz frames, e.g. r 2 - c 2 t 2 = r f 2 - c 2 f ' 2  where ( r ,  t )  

and ( r ' ,  1 ' )  are the space-time coordinates in two Lorentz frames). Thus, the expectation value of n = 
p - eA/c in wavefunction P is gauge invariant since (PlvlY)  = (P'ln'lP'), where n' = p -eA'/c ,  P is the 
wavefunction in gauge (A, a) and P' is that in (A',  a'), with both (A, a) and (A', @') describing the same 
fields. 
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in (2.3). One can easily show that 

HB = ( p  - e A / ~ ) ~ / 2 m  +eVo=:mo2+eVo,  (2.5) 

which is just the sum of the Newtonian kinetic energy (e.g. Cohen-Tannoudji et al 
1977) and the potential energy. 

If we use {E,( t )}  and { 9 , ( r ,  t ) }  to denote the eigenvalues and the orthonormal and 
complete (assumed) set of eigenfunctions of HB(t ) ,  then 

H ~ ( t ) 9 ~ ( r ,  t )  =El(fW,(r, t ) ,  (9, ( f ) l q k  ( t ) )  = Sik. (2.6) 

= (~ l (M(~)) ,  (2.7) 

The gauge-invariant procedure then defines the probability amplitudes {a, ( t ) }  by 

and interprets lai(t)/2 as the probability for finding the particle at time t with energy 
E,(t) (Yang 1976). This interpretation is consistent with the measurement theory in 
quantum mechanics (Cohen-Tannoudji et a1 1977). 

If we use (2.6) and (2.7) in conjunction with the Schrodinger equation, the 
differential equation governing the time evolution of the probability amplitudes is 
obtained: 

ih da,/dt = E,al +c ak(91!(e@-iha/at)19\ITk).  (2.8) 
k 

The transition matrix elements in the above equation can be shown to relate to the 
matrix elements of the power or Poynting operator P ( t )  in (2.4). If E,(t)  ; . ’Ek([) ,  then 

(2.9) 

It should be noted that, according to (2.9), the transitions between any two particles’ 
states of different energies are governed by the Poynting operator P( t ) .  The physical 
processes involved are therefore consistent with Poynting’s theorem in the classical 
electromagnetic theory where energy exchanges between the fields and the particle 
can take place solely in the manner described by the power density. This concludes 
our review of the interaction of a quantised particle with classical electromagnetic fields. 

( q , l ( e @  - i h a / a f ) l q k )  = i f i ( q , \ ~ ( f ) l ~ k ) / ( E l  - E k ) .  

3. The effective Hamiltonian and wavefunction 

In this section, we shall define the effective Hamiltonian and wavefunction using what 
has been developed in § 2. After the concepts of the exact effective Hamiltonian and 
wavefunction are introduced, we will then solve the effective Hamiltonian using the 
perturbative method to derive its first- and second-order solutions. Then, we will 
compare our solutions with the Hamiltonian in the multipolar gauge. Finally, we 
stress here that the effective Hamiltonian is derived from the ordinary Hamiltonians 
through the Schr6dinger equation. 

3.1. The exact effective Hamiltonian 

For convenience of arguments, we shall assume throughout this paper that the 
‘unperturbed’ Hamiltonian 

~ o = p ~ / 2 m  + e V o ( r )  (3.1) 
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has a non- degenerate spectrum, with eigenvalues (hwj} and the orthonormal and 
complete (assumed) set of eigenfunctions { 4 j ( r ) } .  

We begin by assuming that there exists a one-to-one correspondence between the 
spectrum {hwi} of HO and {E,(t)} of Hs(t) .  Then we define the effective wavefunction 
x(r ,  t )  and Hamiltonian X ( t )  by 

(3.3) 

where 

X,k( t )  = EJ(t)& + ( q J ( t ) l ( e @ ( r ,  t )  -iha/at)lqk(t)). (3.4) 

Let us note here that both x(r ,  t )  and %(t )  are gauge invariant since {a,(t)},  {EJ(t)}  
and { ( 9 , ( t ) l ( e @ - i f i 8 / 8 t ) l q k ( t ) ) }  are all gauge invariant and {q5,(r)} are gauge 
independent, From (2.8), (3.2) and (3.3) it follows that we have the gauge-invariant 
effective Schrodinger equation 

ifiax(r, t ) / a t  = X( t )x ( r ,  t ) ,  (3.5) 

with gauge-invariant initial condition x (r, t o ) .  
One matter of importance in the effective wavefunction is in the specification of 

the initial wavefunction x (r, to). If the time-varying electromagnetic radiation fields 
E(r ,  t )  and B(r ,  t )  vanish identically everywhere at t s to when the particle has energy 
her, then it can be shown (Yang 1976, Cohen-Tannoudji et a1 1977, Kobe and Smirl 
1978, Leubner and Zoller 1980) that 

(3.6) 
where LY is a real number. We note here that (3.6) is the conventional way of specifying 
the initial condition for all gauges (e.g. Merzbacher 1960). 

The second matter of importance, following the gauge invariance of the effective 
wavefunction, is the gauge-invariant effective time-evolution operator 0% ( t ,  t o )  defined 

x ir, t o )  = exp(ia 141 ( r ) ,  

by 

x(r ,  t )  = % ( t ,  to)x(r, t o ) .  (3.7) 
This effective time-evolution operator also has the conventionally specified initial 
condition 

% ( t o ,  t o )  = 1. (3.8) 
Furthermore, it follows from (3.5)-(3.8) that 

iha% ( t ,  to ) /a t  = X( t )% ( t ,  to).  (3.9) 

There are two different ways of solving equation (3.5) for the probability ampli- 
tudes. The first is to solve both the effective Hamiltonian and wavefunction perturba- 
tively, resulting in the gauge-invariant time-dependent perturbation theory (Yang 
1982~) .  The second method is to solve only the effective Hamiltonian perturbatively, 
and then use the result to solve for the probability amplitudes as accurately as possible. 
This second method is the one to be discussed in this paper. The first method can 
be applied only to weak radiation fields and, as this author has shown, produces rates 
of net transitions that agree completely with the conventional results. However, the 
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perturbative transition amplitudes and probabilities in general disagree with their 
conventional counterparts, consistent with the investigations of the exact transition 
probabilities by Leubner and Zoller (1980) and Leubner (1981). 

However, when the atoms are in near resonance with an intense, coherent laser 
field where the back scattering is important, the first method can no longer give 
sufficiently detailed information concerning the behaviour of the atoms during the 
interaction, as is the case investigated by Knight and Milonni (1980). In this case, 
we must try to solve the truncated effective Schrodinger equation using a method to 
give as accurate solutions for the probability amplitudes as possible. The commonly 
used approximation is the rotating-wave approximation (e.g. Sargent et a1 1977, 
Knight and Milonni 1980). Thus, we need to solve only for the effective Hamiltonian 
perturbatively. Another advantage of this method is that we can now make a meaning- 
ful comparison between the effective Hamiltonian and the ordinary Hamiltonians 
since the initial conditions for the wavefunctions are specified identically as in (3.6). 
In D 3.2, we shall briefly discuss the perturbative expression for the effective Hamil- 
tonian. 

3.2. Perturbative form of effective Hamiltonian 

As is clear from the defining equation (3.4), one must first solve perturbatively for 
E,(t) and q i ( r ,  t )  in order to derive the perturbative expression for the effective 
Hamiltonian. For this purpose, we will use Ei"'(t) for the nth-order eigenvalue 
correction and 9 j n ) ( r ,  t )  for the nth-order eigenfunction correction of the state j of 
HB ( t )  as obtained from the usual Rayleigh-Schrodinger procedure (e.g. Messiah 1966) 
(see the appendix for more detailed information). Thus, we write 

m P 

E,@) = 1 E y ( t )  and ~ , ( r ,  t )  = 1 q:." ' ( r ,  t )  (3.10) 
" = o  n = O  

with E:" = ho, and qjo)(r ,  t )  = d , ( r ) .  The normalisation requirements of { q , ( r ,  t ) }  and 
{ # ~ , ( r ) }  therefore require (Langhoff et a1 1972) that 

f ( q y m ' l q y )  = 0 

If we now substitute (3.10) into (3.4), then 

for all j and k ,  and all n a 1. (3.11) 
m = l  

(3.12) 

(3.13) 
n 

Rp(t)  =Ej"Sjk  + 1 (9;H-m11p), rial, (3.14) 

&"(t) = eOqLm-')- ihavF'/at. (3.15) 

m = l  

We now define the Nth-order effective Hamiltonian by 

(3.16) 

Corresponding to this XrN1, we define the Nth-order effective wavefunction XIN1(r, t )  
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to be the solution of the Nth-order effective Schrodinger equation: 
ihax[Nl/at = (3.17) 

Because of the normalisation condition in (3.1 l ) ,  it can be shown that 

XrN1(r, to)  = ~ ( r ,  to) (3.18) 

where the right-hand side is listed in (3.6). That (3.18) is valid for all N z O  is 
important, since then there is no ambiguity in the specification of the initial 
wavefunction. 

We now list the zeroth-, first- and second-order forms of the effective Hamiltonian. 
From (3.13) and (3.16) it is clear that 

for all N z 0, 

(3.19) 

We now consider N = 1. From (3.14)-(3.16), and (A5), (A12) and (A13), 

(4jlR‘”I4j) = (djI{Ho-e(A ‘p + p  .A)/2mc +F[-eE]}k#~j), (3.20) 

(4j I%[11 /4k)  = (i/wjk )(dj I p i ” 1 4 k  ), i + k ,  (3.21) 

where wik = wi - w k ,  P‘” is the first-order Poynting (or power) operator 

P “ ’ = e ( p  . E + E * p ) / 2 m  (3.22) 

and 

(3.23) 

Associated with the result (3.23) is the requirement that the scalar potential @(r, t )  
satisfy the condition @(O, t )  = 0. This requirement can be easily satisfied by the simple 
substitution @(r, t )  + @(r, t )  - @ ( O ,  t ) .  As has been explained previously (Yang 1982c), 
such a requirement entails no consequence in either the transition matrix elements 
for states with different energies or the transition probabilities. 

For the second-order effective Hamiltonian, we first define the second-order 
Poynting operator Pcz )  by 

(3.24) 

Note P = P(1)+Pc2) ,  where P is defined in (2.4) and P“’ in (3.22). Furthermore, we 
define the operators {Q:”} and the reduced resolvent operators (i.e. the reduced 
Green functions) {G;’)} by 

Gjo’ = QJo’/(hw, -Ho), Qio) = 1 - I4,)(4,I. (3.25) 
With these operators, the functions (u j1 ) }  and {S:”} defined in (A16) and (A18) can 
be expressed as 

(3.26) 

Pi” = -e2(A .E + E *A)/2mc. 

( 0 )  (1) u; l )  = Gjo’V?~, ,  [:” = ihG, PB 4,, 
where, using VI = -e(A * p  + p  .A)/2mc defined in (Al) ,  

V? = V ~ + ( i e / c h ) [ H ~ , F [ A l l =  -(e/2mc){p.(A-VF[A])+(A-VF[A]).p}, (3.27) 

Pg) =P“’+ih-’[Ho,F[-eE]]=(e/2m){p *(E -VF[E])+(E-VF[E]).p}.  (3.28) 

Note, V? = 0 if B = 0 and P(B1) = 0 if aB/at = 0. 
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We are now ready to give the explicit expression for the second-order effective 
Hamiltonian (where V1 and V z  are defined in (3.2)): 

(4 ,1~”[ ’ I4 ,>=(4 , I {Ho-e (p .A  + A  *p) /2mc +F[-eE]+(VIG,‘o’Vl+ V2) 
-&h(P~’Gjo’Gjo’Vf - V f G ,  (0) G, (0) PB ( 1 )  ) 

+ (F[-eE]G;”Vf + VfGj”F[-eE]) 

+(e2/2ihc2)CF[A I, F[A11114,>, (3.29) 

where the last term [F[A],  F[A]]  vanishes for the classical fields (they are shown here 
to illustrate the difference between classical and quantised fields). On the right-hand 
side of the above equation, the fourth term, VIGjo)V1 + V2, comes from E;*’ in (A6), 
and all the other second-order terms can be understood from (A17) and (3.26). The 
off-diagonal elements ( j  # k) of the second-order effective Hamiltonian are 

( ~ , l % i 2 1 1 4 k )  = (i/0,~)(4,1{P(1’+P(1’G~01Vf + VfGjo’P“’+P‘2’ 

+(ie/C h)[P‘”, F [ A ] ]  - ( h O , k ) - ’ (  V1Q:o’P‘1’-P(1)Ojp’Vl)}14k), (3.30) 

where 0:’’ = 1 -aio’ = I + k ) ( 4 k I  is the projection operator? onto the ‘unperturbed’ 
state 4 k .  In (3.30), all the second-order terms can be understood from (3.26) and (A15). 

One particular characteristic of the effective Hamiltonian is that its elements extend 
beyond the second order, for example, one can easily show that the nth-order (n  > 2) 
elements do not vanish if there is a magnetic field, i.e. V x A # 0. If, however, some 
approximations are made such that the magnetic field is neglected, then all the elements 
higher than the first order can be shown to vanish identically. In contrast, the ordinary 
Hamiltonian can at most have only second-order terms as illustrated in (2.3). 

3.3. Comparison with the multipolar-gauge Hamiltonian 

It follows from the gauge invariance of the effective Hamiltonian that all its elements 
can, in principle, be expressible explicitly in terms of the fields. It is therefore tempting 
for us to make a brief comparison with the multipolar-gauge Hamiltonian (e.g. Power 
and Zienau 1959, Fiutak 1963, Woolley 1975). Here, we should perhaps emphasise 
that the comparison is made only with the classical multipolar-gauge Hamiltonian in 
which the symbols E and B refer to the electric and magnetic fields. This is in contrast 
with the quantised multipolar-gauge Hamiltonian where the displacement vector D 
and its magnetic counterpart B, as opposed to E and B, are used to denote the photon 
fields. 

The multipolar-gauge classical Hamiltonian is 

Hmp= ( p  - e A , , / ~ ) ~ / 2 m  +eVo+eam,, (3.31) 

where @,, = F [ - E ]  (see (3.23) and, e.g., Woolley (1975)) and 
1 

Amp(r ,  t )  = -jo du ur x B(ur, t ) .  (3.32) 

t The conventional notation for the projection operator onto the state 4 k  is denoted by Pk, rather than 
the or) used in this paper. Our reason for using 0:’’ is to avoid confusion since there are already too 
many P’s  for the Poynting (or power) operators. 
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For comparison, we shall write Hg;  = Ho, = Hmp, and 

HI‘] mp = Ho-e(p *AmP+Amp*p)/2mc +e%,,. (3.33) 

It then follows from the above definitions that, for all j and k, 

(4jIHZ; 14k)=(4jI{Ho-e(Amp*p + p  *Amp)/2mc +e@mp}l+k). (3.34) 

The above matrix elements are to be compared with (3.20) and (3.21). Since (~#+l(p * A  t- 
A . P ) I ~ ~ )  is gauge invariant (e.g. Yang 1977), it then follows that 

(3.35) 

which is a mathematical consequence of A =Am, + F[A] where F is defined in (3.23). 
Thus, (3.20) is identical to (3.34) for j = k. 

( ~ , I ( P  * A  + A  *p)l4j)=(djl(p .Amp+Amp*p)/#j), 

To make a comparison between (3.21) and (3.34) with j Z k, we shall use 

E(r ,  t )  = -VQmp(r, t )  -c-’dAmP(r, t ) / d t .  (3.36) 

Substituting this result into (3.21), we get, for j f k, 
(4jIxr1’/4k) = (i /wjk)(d/at)(4j/  - e ( p  ‘Amp +Amp’P)/2mc l d k )  -!- (4j/e@mpl4k). (3.37) 

Thus we see that, for the first order, the effective Hamiltonian differs from the 
multipolar-gauge Hamiltonian in the magnetic interactions. This suggests that, when 
the interactions are dominated by the electric dipole, it is difficult to distinguish 
between the two. However, if an experiment can be designed in which the magnetic 
dipole interaction dominates, then one should be able to decide experimentally 
between the two even from the first-order results. 

There is no need to make an explicit comparison between the effective Hamiltonian 
and the multipolar-gauge Hamiltonian for the second-order results. It is obvious that 
these two are very different simply by inspecting (3.29)-(3.31). Note, in (3.29), one 
can replace A in ( VIGy’V1 + V 2 )  by Amp. This is due to the gauge invariance of E?’ 
in (A6). The difference in the second-order elements also suggests that one can 
distinguish between them by investigating the second-order physical predictions (one 
must include the magnetic field, though). 

4. The AC Yoynting splitting 

In this section, we shall solve the first-order effective Schrodinger equation when the 
external radiation field is a single-frequency field with angular frequency w tuned to 
near-resonance with two energies hwl and Aw2 of the ‘unperturbed’ Hamiltonian. We 
shall use the two-state and rotating-wave approximations to derive the AC Poynting 
splitting for the exacf fields. Then we will show that it reduces to the more familiar 
AC Stark splitting when the dipole approximation on the fields is made. We will also 
show that, for those first-order interactions in which the magnetic dipole dominates 
(i.e. the electric dipole transitions are forbidden), it reduces to the AC Zeeman splitting 
under the long wavelength approximation. 

Assume that the radiation fields have the form 

~ ( r ,  t )  = ~ + ( r )  elwt + ~ - ( r )  e+‘, (E+)* = E - ,  (4.1) 
and similarly for R(r ,  t ) ,  where * denotes the complex conjugate. Since the first-order 
effective Hamiitonian as indicated in (3.20) and (3.21) is manifestly gauge invariant, 
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we may choose whatever potentials we please as long as they generate the correct 
fields. For example, one may choose them to be such that @(r, t )  = 0 and 

(4.2) 

I fweusewo=w2-wl=w, thenaccordingto(3.2), (3.17), (3.20)and(3.21), we have 

A(r,  t )  = A + ( r )  elW'+A-(r)  e-'"'. 

i da2/dt = (w2 + A2)u2 + Val, 

i dal /dt  = (w1 + A l ) a l  + V*a2, 

Aj = (4,Ij-b .A + A  *p)/2mc +F[-eEI)/4,), 

V(t) = (i/iiwo)(d2/e(p * E  + ~ * p ) / 2 m / 4 ~ ) =  V, e'"'+ V- e-'"'. 

(4.3) 

(4.4) 

where 

(4.5) 

(4.6) 

The effects of A1 and A2 on the solutions of a l  and a2 can be seen to be of second 
order in the fields. If we define (Keldysh 1965) 

6, = a, exp(iw,t + i&), & ( r )  = [ ' d f ' A , ( r ' ) ,  (4.7) 
0 

then, using do = d2 - dl, 
i db2/dt = Vbl exp(iwot+ido) = Vbl exp(iwot)(l + i d o +  . . .), (4.8) 

and similarly for dbl/dt. Thus for all practical purposes in the first-order investigation, 
A I  and A2 can be neglected from (4.3) and (4.4). 

If we solve (4.3) and (4.4) using the rotating-wave approximation with the initial 
conditions that a l (0 )  = 1 and a2(O) = 0, then (e.g. Knight and Milonni 1980) 

(4.9) a 2 ( t )  = [K,  exp(ip+t) + K- exp(i@-t)] exp(-iw2t), 

(4.10) 

(4.11) 

From (4.6) and (4.10), it is seen that the Rabi flopping frequency, 

(4.12) 

is caused intrinsically by the first-order Poynting (power) operator Pi') = 
e ( p * E + E * p ) / 2 m  as defined in (3.22). Hence, the frequency splitting is the AC 

Poynting splitting. 
If the states 41 and 42 are of opposite parities, and if the long wavelength 

approximation applies, then the AC Poynting splitting reduces to the more familiar 
AC Stark splitting (e.g. Knight and Milonni 1980) since 

2 2 1 /2  CL = p + - K - = [ ( w o - w )  + 4 1 v - 1 1  , 

(ilwo)(d2leP * E(O, t ) / m  141) = (421 -er *E(O, f)ldl). (4.13) 

If these two states are of the same parity, the long wavelength applies and the 
transition is dominated by the magnetic dipole, then the AC Poynting splitting reduces 
to the AC Zeeman splitting since (Yang 1976, 0 IV) 

E(r,  t ) =  - v [ M ~ '  + M ( E ~ ' ] - ( ~ / ~ c ) [ ~ B ( o ,  t ) /a t ]xr ,  (4.14) 
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where M g )  = -r *E(O, t )  and 

(4.15) 

with r = (xl, x2, xg) and similarly for r’ .  If we substitute (4.14) into (4.6) and use the 
fact that the magnetic dipole interaction dominates, then 

V- =h-’(w/wo)(d21- ( e /2mc)r  x p  * B - ( O ) I ~ ~ ) .  (4.16) 

One should note that the magnetic dipole transition operator, as can be seen from 
(4.6) and (4.14), involves the time derivative of the magnetic field. This is in contrast 
with the magnetic dipole operator in the multipolar-gauge Hamiltonian which is 
- ( e /2mc)r  x p  * B .  Because of this difference, we have the extra factor ( w / w o )  appear- 
ing in (4.16). Such a difference, as noted in § 3.3, should have some experimental 
consequences in the measurement of the Rabi flopping frequencies. 

5. Treatment of quantised fields 

In § 3, we have shown that the introduction of the effective Hamiltonian and wavefunc- 
tion does eliminate the gauge ambiguity in the quantum mechanical formulation of a 
quantised particle interacting with classical fields. This thus raises hopes that maybe 
it is able to do so also for the quantised fields. That is, it does not matter whether 
the fields are quantised directly (without any reference to how to quantise the 
potentials) or the potentials are quantised first (as is usually done). (For a discussion 
concerning this point, see Scully and Lamb (1967).) In this section we shall show that 
if certain rules are observed:, one can use either scheme of quantisation in conjunction 
with the effective Hamiltonian and end up with the same results. As an illustration, 
we shall use the field Hamiltonian and the first-order particle’s effective Hamiltonian 
to derive the gauge-invariant Jaynes-Cummings doublets (Jaynes and Cummings 1963, 
see also Knight and Milonni 1980) by using the usual quantised transverse uector 
potentia 1. 

5.1. The Scully-Lamb quantisation procedure 

The Scully-Lamb (1967) quantisation procedure, designed to sidestep the A * p  against 
r . E  ambiguity as noted in the introduction, is to quantise the (transverse) electric 
and magnetic fields E and B ( n o t D  and B )  directly, starting from Maxwell’s equations 
in the absence of all charge and current densities. We will not repeat the procedure 
here but merely quote their results. If we have a finite volume V with linear dimension 
L,  and consider only the x component of the electric field propagating in the z direction 

t For the purposes of this paper, these rules consist of some mathematical identities and the correspondence 
between the quantised field equations and the classical Maxwell equations ( 6  5 . 2 ) .  In a later paper, we 
shall derive all the results in 4 5  3.2, 5.2  and 5.3  starting from the total (fields plus particles) Hamiltonian 
within the framework of the fully quantised scheme in the radiation gauge (e.g. Fermi 19321, together with 
two added physical assumptions. These two assumptions are: (i) that a photon detector measures only the 
radiation energy flux reaching the detector (i.e. it cannot measure the physical states of the particles), and 
(ii) that the self-interaction of a charged particle cannot be turned off during such a measurement (i.e. such 
a measurement is done in the presence of the self-interactions of the particles). 
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(their details will be followed as much as possible), then 

(5.1) 

(5.2) 

where K, = m / L  and s is a positive integer. The vectors e, and e, are the unit vectors 
in the x and y directions, C, = (27rhOJ V)"' and R, = cK,. Throughout this section, 
a caret will be used to indicate that the fields involved are quantised. The operator 
b, (6:) is a photon annihilation (creation) operator and satisfies the commutation 
relation [b,, b:,] = s,,,. 

The free-field Hamiltonian is 

(5.3) 

The eigenstates of H F F  will be denoted by the usual notation. In particular, in,) will 
represent the normalised state with n photons having wavevector K,. 

Let us note one important consequence of this particular quantisation procedure. 
It is that the operation represented by d(r, t)ln,), for example, is not mathematically 
defined for A in any arbitrary gauge; it is defined only for those vector potentials that 
can be explicitly expressed in terms of E and B. 

We now discuss how the effective Hamiltonian method can be used with this 
quantisation procedure. If we use only the particle's first-order effective Hamiltonian, 
then the total effective Hamiltonian is 

%$I = &[']+HFF, (5.4) 
where 2''' is defined by (3.20) and (3.21), with quantised A and E. First, we use the 
fact that {(dil(p * A  + A  *p) l&i) }  are gauge invariant (for both classical and quantised 
vector potentials) to write 

(4i I&[ "bj ) = (4i I ~o - e ( P * A mp -I- mp * P / 2mc + F [  - e k  11 141 >, (5.5 
where, by (5 .2)  and (3.321, 

and the operator F [ - e k ]  can be similarly expressed using (5.1) and (3.23). The 
off-diagonalelements(4j/&['11q5k) can be obtained by replacing E in (3.21) by k i n  (5.1), 

is 
completely expressed in terms of the operators {b,}, all of its elements are operationally 
defined with respect to how they operate on the photon states. Hence, there is no 
ambiguity as to how one can use the total effective Hamiltonian in (5.4) to derive the 
probability amplitudes for finding the particle and the photons in any states to compare 
with experiment. 

Since, after the procedure in (5.4)-(5.6), the total effective Hamiltonian 

5.2. Some mathematical identities 

In this subsection, we shall derive a few important results from (5.1)-(5.6) that will 
be necessary for showing that the Scully-Lamb procedure is equivalent to the usual 
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procedure of quantising the transverse vector potential (e.g. Heitler 1960, Sakurai 
1967), provided that the effective Hamiltonian is used to obtain physically meaningful 
quantities. Let us point out here that all results in this subsection are derived using 
the Scully-Lamb quantisation procedure, i.e. all photon operators are expressed in 
the {b,} operators and the vector potential is an auxiliary, rather than a fundamental, 
quantity. 

Let us first define a vector potential &r, t )  by 

Then it can be shown that the following relation is true: 

(4j I ( P  * At + At 'P )I4j) = (4j /(P Amp + A m p  'P )I4j), (5.8) 

where A,, is listed in (5.6). The proof of (5.8) follows by observing the complete 
equality between each s component of B in (5.2) and that of V XA, and by using the 
usual techniques associated with the multipolar gauge (see especially Woolley (1975)). 

Next, we observe that the following relations are also true: 

(5.9) 

(5.10) 

(5.11) 

where b, 8, HFF and At are listed respectively in (5.1), (5.2), (5.3) and (5.7). The 
result (5.11) follows from (5.9) and (5.10). The above three field equations will serve 
as our quantised equivalent of the following three classical Maxwell equations which 
do not explicitly involve the charge and current densities (using only the transverse 
component E of the total electric fields): 

E(r,  t )  = -c-laAt(r, [) /at ,  

B ( r , t ) = V x A t ( r ,  t ) ,  

V X E ( ~ ,  t )  = -c-'aB(r, t ) / a t .  

(5.12) 

(5.13) 

(5.14) 

That (5.9) and (5.11) involve only the free-field Hamiltonian HFF can be understood 
from the correspondence principle and the classical equations (5.12) and (5.14). 
According to the classical Maxwell equations, (5.12) and (5.14) are valid whether or 
not there are charge and current densities present (there is no need to assume that 
there are no sources or that the sources are at infinity). Since (5.12) and (5.14) do 
not explicitly involve the sources, the classical operations denoted by a /a t  in these 
two equations should produce the net effects that their corresponding quantised 
equivalents do not explicitly involve the particle's Hamiltonian (H in (2.3), for 
example). Such a statement can be justified rigorously from the fully quantised 
ordinary Hamiltonian, which is outside the scope of the present paper (see the footnote 
at the beginning of 0 5 ) .  For the purposes of this paper, we simply assume that (5.9) 
is equivalent to (5.12), and proceed to treat (5.9) as one equation defining the 
relationship between the transverse electric field I f  and the transverse vector 
potential A , .  
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5.3. Quantisation of the vector potential 

The assumption that equations (5.9)-(5.11) are the quantised equivalents of the three 
Maxwell equations (5.12)-(5.14) has enabled us to realise one important and favour- 
able result. It is that the Scully-Lamb procedure and the usual procedure of quantising 
the transverse vector potential (e.g. Heitler 1960, Sakurai 1967) will give the same 
results provided the effective total Hamiltonian in (5.4) is used. This is because we 
have been able to construct A ,  and prove (5.8) completely in terms of the Scully-Lamb 
photon operators. For this reason, we now make no distinction between these two 
quantisation procedures and proceed to write E:’ in (5.4) in the usual notation. 

Let us use a: (a,) to denote a photon creation (annihilation) operator in the 
scheme of quantising the transverse vector potential A,, where A = (k, a) and k is the 
wavevector and a is the polarisation index. Then (in gaussian units) 

(5.15) 

where eh is a real polarisation vector satisfying k *eA = 0, U, = clkl and CA = 
(27rhwA/ V)1’2 where V is the normalisation volume. In this notation, H F F  is 

HFF = 1 hwA ( a l a ,  + i), 
A 

and &(r, t )  and f i ( r ,  t )  are obtained by (5.9) and (5.10): 

(5.16) 

(5.18) 

The diagonal and off-diagonal matrix elements of %?ll are obtained by using a, and 
I? in (5.15) and (5.17) to replace the A and E in (3.20) and (3.21). In § 5.4, we shall 
use this first-order total effective Hamiltonian to derive the AC Poynting splitting. 

5.4. The gauge-invariant Jaynes-Cummings doublets 

The original Jaynes-Cummings (1963) doublets were derived in the quantisation 
procedure of (5.15) using the ordinary total first-order Hamiltonian 

(5.19) 

If the photon state in,) is such that w,  = w 2 - w 1 ,  where w2 and w1 are two eigenvalues 
(divided by ZZ) of the unperturbed Hamiltonian Ho, then the states 11, n,) and 12, (n  - l),) 
are almost degenerate in energy. The energies of H!] are then the eigenvalues of 
the 2 x 2 matrix with elements (2, (n  - l),IHI,“ 12, (n - l),), (2, ( n  - l ) s lV~l ) l l ,  n,), 
(1, n,l Vi’’ 12, (n  - l),) and (1, n,IH!’(l, n,) in the rotating-wave approximation, where 
Vjl) = -e(p *A,+At*p) /2mc.  It then follows that, for the exact field, 

(2, ( n  - lls1 V:”/ l ,  n,) = -(e/mw,)(n,)”2C,(~~~e-ik’re, spl41). (5.20) 

On the other hand, if we apply the same procedure and approximation to our 

(2, ( n  - l)sl@lll, n,) = - ( e / m w ~ l ) ( n , ) 1 ’ 2 C s ( 4 ~ ~ e i k ‘ r ~ s  *p141), (5.21) 

HI,‘] =p2/2m +eVo-e(p *At+.dt .p) /2mc +HFF. 

effective first-order total Hamiltonian %pl, then 
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which differ from (5.20) if w s  # w z  - w l  = wZ1. The two diagonal matrix elements of 
Xpl are equal to those of HY].  Hence the eigenenergies obtained from our effective 
total Hamiltonian are slightly different from those of the ordinary total Hamiltonian. 
As can be seen from $ 4 ,  our result in (5.21) is exactly the AC Poynting splitting, 
which reduces to the AC Stark splitting in the dipole approximation. Thus, we have 
shown that our effective Hamiltonian can still produce gauge-invariant results even 
in the quantisation scheme in which the transverse vector potential is quantised first. 

6. Conclusions 

The approach of the effective Hamiltonian and wavefunction used in this paper has 
its origin in a manifestly gauge-invariant formulation of a quantised particle interacting 
with classical electromagnetic fields (see 5 2 for references) and in the formulation of 
the gauge-invariant time-dependent perturbation theory (Yang 1981, 1982~) .  
However, in order to consider the interaction with quantised electromagnetic fields, 
the introduction of the particle’s effective Hamiltonian is a necessary step for each 
manipulation of the mathematics involved, for specifying the initial conditions of the 
particle’s state (see 8 3.1), and for easy recognition of all quantities of interest. It is 
also necessary to construct the effective total Hamiltonian since it is precisely in this 
form that the effective total Hamiltonian (e.g. see (5.4)) can be constructed very simply 
by applying Sakurai’s correspondence rule (Sakurai 1967, equation (2.102)). We have 
demonstrated that the effective Hamiltonian approach can resolve the gauge problem 
for the classical fields and makes the procedures of quantisation of vector potentials 
and of fields completely equivalent. 

Throughout this paper and other works of this author (see § 2 for references), we 
emphasise only one physical point: conservation of energy in the form of Poynting’s 
theorem (e.g. Jackson 1975) through the correspondence principle in the equations 
of motion. By carrying this point into the form of mathematical formulation, we have 
shown that the physical principles can indeed produce results that are gauge invariant 
and agree with experimental observations. The AC Poynting splitting, which reduces 
to the familiar AC Stark splitting in the electric dipole approximation, is just one 
consequence of the conservation of energy. The gauge-invariant Jaynes-Cummings 
doublets as derived in § 5 also illustrate that the same physical principles can be 
applied to quantised fields. 

As a final note, let us emphasise here that the effective Hamiltonian is derived 
from the ordinary Hamiltonians by considering only how to derive the gauge-invariant 
(and correct) transition amplitudes and probabilities. Its applications are therefore 
limited only to these and other related quantities, for example, the resonant frequen- 
cies. One should not use the effective Hamiltonian to derive the equations of motion 
of operators. The correct equations of motion of operators, on the other hand, must 
always be derived from the ordinary Hamiltonians. To illustrate this point more 
clearly, let us consider the equations of motion of the position operator r as determined 
by the ordinary Hamiltonian in (2.3) and the effective Hamiltonian in § 3.1. From 
(2.31, we get? 

(drldt), = [r, H]/ih = m - ’ ( p  - e A / c ) ,  

If f = f(r, p ,  f), then (dfldt), is defined to be (df/df)H =df/df  + [f, H]/ih. The notation (dfldt), is then 
defined to be such that the H in the above definition is replaced by the effective Hamiltonian 2. 
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which is obviously not equal to (dr/dt)% since X explicitly involves the electric field 
E whereas H does not. The only exception occurs when B = 0, in which case (dr/dt)% 
gives the equation of motion in the multipolar gauge. This example clearly demon- 
strates our caution concerning when and when not to apply the effective Hamiltonian 
approach proposed here. 
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Appendix. Perturbative solutions of eigenfunctions 

The main purpose is to briefly outline the procedure for solving the eigenvalues and 
eigenfunctions of the energy operator HB ( t )  in (2.6) and to provide enough information 
leading to the perturbative solutions of the effective Hamiltonian discussed in § 3.2. 
Most of the material here has been presented in a previous paper for the time- 
dependent perturbation formulation (Yang 1982~) .  If one is interested in more 
detailed information concerning this appendix, one should refer to that paper. 

Our objective is to solve for the eigenvalues {E,(t)} and the eigenfunctions {!Pj(r, t ) }  
perturbatively using the Rayleigh-Schrodinger procedure (e.g. Messiah 1966). Let 
us therefore first decompose HB as 

HB 0) = Ho + + V2(t) ,  (AI)  

Vl(t) = -e(A * p  + p  *A)/2mc, & i t )  = (eA)’/2mc2. (A2) 

where Ho = p2/2m + e V o  is the ‘unperturbed’ Hamiltonian and 

If we substitute (3.10) and ( A l )  into (2.6) treating time t as a parameter, then we 

(A3) 

get H&(r) = hw,~$~(r )  and 

(Ho- hwj)Vr;”(r, t )  + (Vi --Ej1)(f))4j(r) = 0, 

(Ho-ZIwj)!P~2’+(V1-E11’)Vr~1)+(V2-Ej2))4, = O ,  (‘44) 

and so on. These perturbative eigenfunctions are required to satisfy the normalisation 
condition (3.11) so that the effective Hamiltonian is normalised to any order. These 
eigenvalue corrections can be obtained by the standard procedure; they are 
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and their values are chosen by the normalisation requirement in (3.11) and by the 
proper behaviour under gauge transformations. Our choices are: 

SI” = ( i e / c h ) ( 4 j l ~ [ ~ I / 4 j ) ,  (18) 

(A9) , = _- i(9;1)19j1)) + (ie/2c h){(4j IF[A](9;”) + (9;1)lF[A]lr$j)}, 

where 
r 1  

F[A] = J du r .A(ur, t ) .  
0 

All higher 8’s can be derived by following the procedure outlined in Yang (1982c, 
appendix). Finally, we note that the eigenvalue corrections {El“’} are gauge invariant 
and independent of the values of {a:,“’} (e.g. Yang 1977). 

Because of our needs in § 3.2, we now evaluate (9j”-m)/(km)) where tim) is defined 
in (3.15). If we use H o ~ j  = h ~ , + ~ ,  (A3) and the first-order Poynting’s operator P“) in 
(3.22), then it can be shown that 

( A l l )  (Ho - hwj)tj (1) - - i h ( p  

where = dEj”/dt. It then follows from (A8) and (A1 1) that 

These results will show up in the matrix elements of the first-order effective Hamil- 
tonian in (3.20) and (3.21). 

In order to derive the second-order elements in the effective Hamiltonian, we get 
from (A3) and (A4) the following equation: 

( H ~  - hw,),$2’ + ( v1 -E;” )ti1) = it@’’ - 12;’’ + ih(P2’ - &i2))4,, (A141 

where = dE12’/dt and P ( 2 )  is the second-order Poynting operator in (3.24). From 
this equation one can show after a lengthy but straightforward procedure that, for j # k, 

(1) (1) (91 k k  )+(4,/6k2’) 
= ( i / W , k ) { ( 4 , / P  (1) I u k  (2) ) + ( ~ ; 1 1 1 P ( 1 ) 1 4 k )  

+(4,l(P‘*’+(ie/ch’)[P“’, F[All)/4k)} 

-(i/hW?k){Ej1)(4] IP(1)14k)-(’$, lp(1114k)Ek1)}, (A151 

ui” = 9j1)-(ie/ch)F[A]4,. (A161 

where 

For j = k, we use (A9) and [:“’ deflned in (3.24). If the ordering of the operators 
involving A and E is preserved (for later purposes), then 

(11 (1) (9, 15, )+(4,15j2)) 
= ~ { ( ~ j ” l u ~ ” ) + ( u ~ ” I ~ ~ ” ) } + { ( ~ , / ~ [ - e ~ ] J u j ” )  + ( u ~ ~ ) I F [ - - ~ E ] I ~ , ) }  

+(e 2/2ihc ’M, IF[A I, F[A 1114, ), (A171 

5:’’ = [j” -F[-~EI~,.  (A18) 

where A = aA(r, t ) / a t  and, in parallel with (A16), 
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The main advantage of defining the U:') in (A16) and [l" in (A18) is that they vanish 
identically whenever B(r,  t )  vanishes, regardless of the forms of the vector and the 
scalar potentials. A minor convenience is that they are both orthogonal to 4,, i.e. 

We now discuss one special case of particular interest restricting to classical 
potentials and fields. If B = V x A  = 0, then it can be shown (e.g. Yang 1977, 1982~)  
that (i) all €I"), n 2 1, vanish identically, (ii) U;" = 0, and (iii) P(*) + (ie/c h([P('', 
F ( A ] ]  = 0. Thus, all the second-order elements of the effective Hamiltonian vanish 
identically. (This conclusion is valid for all other higher orders by carrying out the 
details of the mathematical procedure, and is consistent with previous results obtained 
by this author (Yang 1976).) This conclusion is derived, as shown in (A16)-(A18), 
using the potentials in any arbitrary gauge. 

The consequence of the gauge invariance of all E:"), n 2 1, is that they depend 
only on the magnetic field, B = V x A ,  represented by the vector potentials. In other 
words, the E:"' derived in the Coulomb gauge will be identical to those derived in 
the Lorentz or the multipolar gauge, and therefore there is no need to choose any 
particular gauge to work with simply because this gauge has some 'special' properties. 

Because of the manifest gauge invariance (i.e. same forms and same values in all 
gauges), we may therefore extend all our previous perturbative results in this appendix 
to the quantised potentials and fields. This will, however, make all our quantities 
operators in the photon space. The main item now is to see whether the €I"' will be 
gauge invariant for the quantised potentials. For this purpose, let us consider a 
quantised vector potential of the usual transverse form (omitting the normalisation 
fact or) : 

(d] lu i l ) )  = (4Jlsj") = O* 

At( r ,  t )=eA(aA  e lk ' r+a :  

where e ,  (real) is a polarisation vector, k is the propagation vector with k *e, = 0, and 
a ,  (a : )  is a photon annihilation (creation) operator. Then it can be shown that 

(4,IAf(O, t ) ' P 1 4 J ) = o  for all i, (A201 
which agrees with our classical results and implies that the E:'), now an operator in 
the photon space, still depends on the magnetic field. All other higher-order eigenvalue 
corrections can probably be shown in a similar manner. 

The differences between the classical potentials and the quantised ones in (A17) 
and (A18) can be read immediately from the commutators involved by noting that 
U;" still vanishes for the quantised potentials. Once again, these commutators are 
gauge invariant whether or not the scalar potential is used to quantise the fields (since 
the scalar potential commutes with the vector potentials). This concludes this appendix. 
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